Changing the Conversation

businesswoman speaking on

February 13, 2020

I’ve been writing a lot here about how modern analytics can help a college or university make better academic program portfolio decisions. For example, which programs, if any, should be expanded, downsized, or eliminated. These are mission-critical because it is through degree and other formally organized programs that institutions present their teaching prowess to the marketplace. Faculty usually focus on individual courses, but students look at programs when they decide which school to attend and what they say about it to their parents and peers. Thinking about program portfolios holistically helps schools compete in the marketplace, serve students better, and manage course availabilities and staffing more effectively. These matters fall squarely into the wheelhouse of both academic and financial officers.

Program portfolio analytics: Changing decision-making conversations

My goal here is to describe how program portfolio analytics can change the decision-making conversations among provosts, deans, financial officers, and faculty. I will, frankly, push the envelope in the sense that no institution is doing the analysis to be described. However, these are common-sense extensions of work actually being performed by Gray DI and its clients. The goal is to share insights about the complex and interconnected kinds of evidence that have recently become available. The analysis is designed to expand decision makers’ use of evidence, especially quantitative evidence, but without losing the essential elements of judgment upon which good academic tradeoffs depend.

My first blog described how a program portfolio conversation not adequately supported by analytics can degenerate into a cacophony of conflicting proposals. The issue being addressed was how to adjust target program enrollments to produce additional margin while maintaining mission contribution and market performance to the greatest extent possible.

“The discussion ranged widely and sometimes acrimoniously. Some deans and staff members suggested eliminating the smallest programs, on the grounds that they probably were money-losers. Others insisted on protecting the programs judged to be most important academically – which, unsurprisingly, often were resident in the speaker’s own school. Still others advocated programs with strong and growing presence in the marketplace. … Lacking a coherent set of principles and the data needed to exercise them, the meeting threatened to degenerate into an organizational power struggle.”

Sharpen decision-making

My second and third blog introduced two key analytical concepts needed to provide the requisite decision-making framework: course-based economic models that estimate program revenues, costs, and margins; and a scheme for balancing mission attainment, with all its complication and subjectivity, with the numbers-driven economic results. Other Gray DI blogs describe the development and use of market and competitive data in program portfolio analysis. The focus now is on how these results can be brought together to sharpen decision making.

Table 1 gives the data used to construct the illustrative program portfolio display presented in my first and third blogs. We’ll see these data can be used to evaluate SCH changes like the ones proposed in the aforementioned conversation. But first, let’s take a closer look at the definitions of mission and market used in the table (margin requires no special explanation).

Table 1. Data Used to Construct the

Illustrative Program Portfolio Display in logs 1 and 3

Picture 1 Bill Massy Blog

· Mission Contribution: relative effect of changes in SCH on the school’s academic objectives. The program portfolio’s overall mission contribution is the weighted average of the individual programs’ contributions (shown at the bottom of the table). Blog 3 described why schools should make this quantity as large as possible given the constraints under which they operate.

· Market Rating: composite score for the available market data. I have found it useful to define Market Risk as the negative of Market Rating, because lower ratings make it harder to achieve one’s enrollment objectives and conversely. Schools should try to avoid portfolio changes that sharply increase average market risk, and decrease this risk if possible.

These data allow us to estimate the effect of program resizing on mission contribution, market risk, and margin. For example, growing the Writing program by 10% would produce 158 more credit hours and additional $18,157 of margin, while, at the same time, boosting mission contribution by 0.05 and reducing risk by 0.81 (about 2.5 percent of the variables’ respective bases).

You can download the Excel-based tool for performing the calculations and displaying the results, along with a test data file like the one described herein, from Gray DI. The tool’s control panel appears in Table 2. Users start by inputting a target change in portfolio total margin in the upper right-hand cell. The evaluations are performed iteratively, by selecting programs from a pulldown list and specifying desired percentage changes in SCH. Proposals can be added or removed at any time, and a given program can be selected more than once if the user wants to evaluate multiple size increments.

Table 2. Illustrative Program Portfolio Adjustments

Picture2 Bill Mass Blog

The tool also provides visual outputs (illustrated in the Figure) that track, for the list of portfolio changes, cumulative contribution mission, market risk, and the margin gap that remains to be closed. This allows proposals to be tested “on the fly,” so that shifts in the three variables can be evaluated, simultaneously, without interrupting the decision-making conversation. New proposals can be tabled until consensus emerges or the group leader (e.g., the provost or dean) has seen and heard enough to make a decision.

In this case, we see that our hypothetical planning group began by specifying growth in Writing, Mathematical Finance. and English Literature. The estimated consequences appear as the second, third, and fourth points in the charts. (The first point shows “base” or “no change” values—including the whole margin gap of $50,000.) Encouraged by the prospect of achieving the margin target while, simultaneously, improving mission contribution and reducing risk, the group went on to rationalize other elements of the portfolio: by shrinking Sports Management (to boost mission contribution) and Theater Arts (to boost margin) and eliminating Sociology (also to boost margin).

Picture 3 Bill Mass Blog

Visual Display of Cumulative Portfolio Adjustments

Testing alternatives this way pulls the available data together into a coherent set of displays that remind decision-makers about the multifaceted consequences of their choices. The estimates may represent rough approximations but, even so, the reminders can disrupt pre-conceived notions and open the way to much richer discussions about the possibilities for action and their probable consequences.

Gray Associates

Gray Associates, Inc. provides the best available data, software, and facilitated processes to help higher education institutions make high-stakes decisions regarding academic programs, pricing, and locations.

About Gray DI

Gray DI provides data, software and facilitated processes that power higher-education decisions. Our data and AI insights inform program choices, optimize finances, and fuel growth in a challenging market – one data-informed decision at a time.

Related Posts
Subscribe to Our Blog

Don’t miss our latest research and insights

Related Posts